时间: 2024-08-07 18:31:23 | 作者: 食品行业
生产厂家为了更好的提高产品质量于是采用“浸水检漏”来发现不合格工件,这就是通常所说的“水检”,这种检测工艺已经有了近百年的历史。七十年代中后期,一些工业技术发达国家为客服“水检”工艺存在对工件的后续作业带来的一些弊病,先后开始研究代替“水检” 的新工艺、新设备。
九十年代初,用洁净干燥空气作为工作介质对工件的容腔,比如:摩托车的发动机缸体、汽车的发动机缸体、散热器、刹车系统、蒸发器、燃气用具等进行密封性能检验测试的工艺已经很成熟,并有一些相应的检测设备陆续问世。
在普通物理学的概念上,通常任何物质都具有固态、液态和气态,而气态是物质存在的各状态中较特殊的状态,它本身既无一定形状、也无一定体积,它的形状和体积完全取决于盛装气体的容器。任意数量的气体都能被无限地膨胀而充满于任何形状大小的容器之中。
为了对气体进行客观细致的研究,需要对客观气体分子进行一些假设限定,这些经过限定了的气体称为“理想气体”。而描述“理想气体”状态变化规律的数学议程式,称为“理想气体的状态方程”。即:
式中常量R的数值取决于P,V,T等所用的单位。在国际单位制中,P的单位用Pa,V用m3,T用K,则R=8.314 J/K.mol。
从理想气体状态方程可以推导出,一定质量的气体,在压强不变的情况下,它的体积跟热力学温度成正比。
上式中P1、V1、T1表示气体在初始状态下的压力、体积和温度;P2、V2、T2表示该气体在最终状态下的压力,体积和温度。这个方程表明一定质量的气体,不管其状态如何变化,它的压强和体积的乘积除了绝对温度,所得之商从始至终保持不变。这就是采用气体对工件进行密封性能检验测试的基本原理。
假设有一个被测工件(或物体)的内腔容积是V,腔内压力是P,在温度恒定的情况下,经过几秒或几十秒后,它的内腔容积没有变化,而腔内压力下降了一个确定值△P,这时我们就可以判定该工件气体密封性能不好,或者叫做“有泄漏工件”。否则认为该被检测工件气体密封性能好或叫做“无泄漏工件”。在实际工业生产过程中,绝对无泄漏工件是极少的。在实际检验测试过程中,通常总是根据该工件具体的应用环境条件和状态给出一个允许泄漏值,当工件泄漏值小于该值时则认为该工件“无泄漏”称为合格品。只有工件泄漏值大于该值时才认为“不合格”或“严重泄漏”。
工件有泄漏,必定有“漏孔”。这里通常指的漏孔是非常微小的,其截面形状也各不相同,漏孔漏气的路径也各式各样。
漏孔常常会出现在物质组织疏松、裂纹、裂隙、应力集中、弯折、可拆卸等部件。大多数是由于加工工艺不合理,结构不合理、安装不合理等问题导致的。
漏孔的几何尺寸是很微小的,因此它不能用我们的肉眼所觉察, 加工漏气路径又各式各样,截面形状又很复杂,所以漏孔的大小极难用它的几何尺寸来度量。
由气体定律PV=M/RT可知,当温度一定时,气体的质量可以用气体的压强和体积的乘积PV (即气体量)来表示,而PV又是容易测量的,所以“漏孔”的大小可以用单位时间泄漏的气体量(PV)来表示,称为漏率。其物理意义为:压强x体积/时间。漏率的国际单位为“瓦特”(W)或Pa.m3/s。1W=1Pa.m3 / S=103Pa.L/S=7.5Torr.L/S。漏孔的漏率也就是通过漏孔的气体流量,这个气体流量受环境和温度、漏孔两端的压差(即工件内外压差)和气体各类等因素的影响。从漏率单位的量纲我们大家可以看到:由于 1Pa=1N / m2 , 1J=1N.m; 因此 1Pa.m3 / S=1J / S=1W。
由此可见PV单位表示的流量本质上就是单位时间穿过某一截面的能量,它并不是气体分子本身携带的动能或位能,而是使气体分子通过某一截面流动所需的能量。
气体密封性能检验测试根据被检测工件(物体)容腔内实际压力与外界压力状态大致上可以分为两大类,即加压检漏法(或正压检漏法)和真空检漏法。
在被检工件容腔内充入很多压力的气体(称示踪气体或控漏气体)或液体,当工件存在漏孔时,气体(或液体)便从漏孔中逸出。漏孔越大,逸出量越大,只要在工件外面采取了适当的指示方法查明有无气体(或液体)逸出,逸出量的多少等就可判断有无漏孔存在、漏孔位置和大小。比较有代表性的是传统的“打气试漏法”(即通常所说 的“水检”)。